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What are overlapping grids and why are they useful?

Overlapping grid: a set of structured grids that overlap.

Overlapping grids can be
rapidly generated as bodies
move.

High quality grids under large
displacements.

Cartesian grids for efficiency.

Efficient for high-order
accurate methods.
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Aerospace applications using overlapping grids.

Space shuttle figures courtesy of William Chan and Reynaldo Gomez.
V-22 Osprey figures courtesy of William Chan, Andrew Wissink and Robert Meakin.
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Overture: tools for solving PDE’s on overlapping grids

high level C++ interface for rapid prototyping of PDE solvers.

built upon optimized C and fortran kernels.

library of finite-difference operators: conservative and
non-conservative, 2nd, 4th, 6th and 8th order accurate
approximations.

support for moving grids.

support for block structured adaptive mesh refinement (AMR).

extensive grid generation capabilities (Ogen).

CAD fixup tools (for CAD from IGES files).

interactive graphics and data base support (HDF).
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The CG (Composite Grid) suite of PDE solvers

cgad: advection diffusion equations.

cgins: incompressible Navier-Stokes with heat transfer.

cgcns: compressible Navier-Stokes, reactive Euler equations.

cgmp: multi-physics solver (e.g. conjugate heat transfer).

cgmx: time domain Maxwell’s equations solver.

cgsm: solid mechanics (*new*)

Overture and CG are freely available from the web:

www.llnl.gov/CASC/Overture
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Components of an Overlapping Grid

Ω

∂Ω

physical boundary

b b interpolation
bc unused

u u ghost point

Physical space:
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Ogen can be used to build 2D overlapping grids:

Solutions coupled by interpolation
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Ogen can be used to build 3D overlapping grids:
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Composite/ Chimera/ Overset/ Overlapping Grids
A Short History

Volkov, circa [1966] developed a Composite Mesh method for Laplace’s
equation on regions with piece-wise smooth boundaries separated by
corners. Polar grids are fitted at corners to handle potential singularities.

Starius, circa [1977] (student of H.-O. Kreiss) considered Composite
Mesh methods for elliptic and hyperbolic problems – introduces a
hyperbolic grid generator.

Steger, circa [1980] independently conceives the idea of the overlapping
grid, subsequently named the Chimera approach after the mythical
Chimera beast having a human face, a lion’s mane and legs, a goat’s
body, and dragon’s tail. NASA groups develop grid generator PEGSUS,
hyperbolic grid generation and flow solver Overflow (Steger, Benek,
Suhs, Buning, Chan, Meakin, et. al.)

B. Kreiss circa [1980] develops overlapping grid generator which
subsequently leads to the CMPGRD grid generator [1983] (Chesshire,
Henshaw) later leading to the Overture set of tools [1994].
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Theory for finite difference schemes

There is extensive numerical analysis theory underpinning this work.

classic von Neumann stability analysis (periodic domains).

energy estimates (L2-norm estimates).

normal mode analysis, GKS theory (initial boundary value
problems).

Some references:

• Gustafsson, Kreiss, Oliger, Time Dependent Problems and Difference
Methods, (book).
• Strikwerda, Finite Difference Schemes and Partial Differential Equations,
(book).
• Gustafsson, Kreiss, Sundström, Stability Theory of Difference Approx. for
Mixed Initial Boundary Value Problems, I. and II., Math. Comp.
• Starius, On Composite Mesh Difference Methods for Hyperbolic Differential
Equations, Numer. Math.
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A one-dimensional overlapping grid example

To solve the advection-diffusion equation

ut + aux = νuxx , x ∈ (0, 1)

u(0, t) = g0(t), ux(1, t) = g1(t), (boundary conditions)

u(x , 0) = u0(x), (initial conditions)

introduce grid points on the two overlapping component grids,

x (1)
i = xa + i∆x1, i = −1, 0, 1, . . . , N1 + 1, ∆x1 = (xd − xa)/N1

x (2)
j = xc + (j + 1)∆x2, j = −1, 0, 1, . . . , N2 + 1, ∆x2 = (xb − xc)/N2

and approximations Un
i ≈ u(x (1)

i , n∆t), V n
i ≈ u(x (2)

i , n∆t).

U−1 U0 U1 U2 · · · UN1+1

V−1 V0 V1 · · · VN2 VN2+1

xa xc xd xb
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Discretize with forward-Euler and central differences

Given the solution at time tn, compute the solution at time tn+1:

(Un+1
i − Un

i )/∆t = −aD0Un
i + νD+D−Un

i , i = 1, 2, . . . , N1

(V n+1
j − V n

j )/∆t = −aD0V n
j + νD+D−V n

j , j = 0, 2, . . . , N2

Un+1
0 = g(tn), D0V n+1

N2
= g1(t

n+1), (boundary conditions)

Un+1
N1+1 = (1 − α)(1 −

α

2
) V n+1

−1 + α(2 − α) V n+1
0 +

α

2
(α − 1) V n+1

1 , (interpolation)

V n+1
−1 = (1 − β)(1 −

β

2
) Un+1

N1−1 + β(2 − β) Un+1
N1

+
β

2
(β − 1) Un+1

N1+1, (interpolation)

D0Un
i =

Un
i+1 − Un

i−1

2∆x
, D+Un

i =
Un

i+1 − Un
i

∆x
, D−Un

i =
Un

i − Un
i−1

∆x
.

U−1 U0 U1 U2 · · · UN1 UN1+1

V−1 V0 V1 · · · VN2−1 VN2 VN2+1
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Overture supports a high-level C++ interface
But is built upon mainly Fortran kernels.

Solve ut + aux + buy = ν(uxx + uyy )

CompositeGrid cg; // create a composite grid
getFromADataBaseFile(cg,"myGrid.hdf");
floatCompositeGridFunction u(cg); // create a grid function
u=1.;
CompositeGridOperators op(cg); // operators
u.setOperators(op);
float t=0, dt=.005, a=1., b=1., nu=.1;
for( int step=0; step<100; step++ )
{

u+=dt*( -a*u.x()-b*u.y()+nu*(u.xx()+u.yy()) ); // forward Euler
t+=dt;
u.interpolate();
u.applyBoundaryCondition(0,dirichlet,allBoundaries,0.);
u.finishBoundaryConditions();

}
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Overture is used by research groups worldwide

Blood flow in veins with blood clot filters. (Mike Singer, LLNL).

Pitching airfoils and micro-air vehicles (Yongsheng Lian, U. of Louisville)

Relativistic hydrodynamics and Einstein field equations (Philip Blakely,
Nikos Nikiforakis, U. Cambridge).

Compressible flow/ice-formation (Graeme Leese, U. Cambridge).

Tear films and droplets (Rich Braun U. Delaware, Kara Maki UMN).

High-order accurate subsonic/transonic aero-acoustics (Phillipe Lafon,
CNRS, EDF, France).

Low Reynolds flow for pitching airfoils (D. Chandar, R. Yapalparvi, M.
Damodaran, NTU, Singapore).

Incompressible flow in pumps (J.P. Potanza, Shell Oil, Houston).

High-order accurate, compact Hermite-Taylor schemes (Tom Hagstrom,
SMU, Dallas).
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Cgins: incompressible Navier-Stokes solver.

2nd-order and 4th-order accurate (DNS).

support for moving rigid-bodies (not parallel yet).

heat transfer (Boussinesq approximation).

semi-implicit (time accurate), pseudo
steady-state (efficient line solver), full implicit.

• WDH., A Fourth-Order Accurate Method for the Incompressible Navier-Stokes
Equations on Overlapping Grids, J. Comput. Phys, 113, no. 1, (1994) 13–25.
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Incompressible Navier-Stokes.

ut + (u · ∇)u + ∇p − ν∆u − f = 0, t > 0, x ∈ Ω

∇ · u = 0 t > 0, x ∈ Ω

Divergence damping term: α∇ · u is important.

Wall boundary conditions:

u = 0, ∇ · u = 0, (pressure BC) x ∈ ∂Ω,

with numerical boundary condition:

pn = −n · ( ν∇×∇× u ).

Use ∇×∇× u instead of ∆u for implicit time-stepping.

• WDH, N.A. Petersson, A Split-Step Scheme for the Incompressible Navier-Stokes
Equations, 2003.

Henshaw (LLNL) PDEs on Overlapping Grids UIUC 17 / 35
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Flow past a blood-clot filter using cgins
Overlapping grid for the filter

Trap-ease wire filter

Spherical clot trapped in the filter

Cone shaped clot Spherical clot trapped near the front

M.A. Singer, WDH, S.L. Wang, Computational Modeling of Blood Flow in the Trapease Inferior
Vena Cava Filter, Journal of Vascular and Interventional Radiology, 20, 2009.
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Cgcns: compressible N-S and reactive-Euler.

reactive and non-reactive
Euler equations, Don
Schwendeman (RPI).

compressible Navier-Stokes.

multi-fluid formulation, Jeff
Banks (LLNL).

adaptive mesh refinement and
moving grids.

• WDH., D. W. Schwendeman, Parallel Computation of Three-Dimensional Flows using
Overlapping Grids with Adaptive Mesh Refinement, J. Comp. Phys. 227 (2008).
• WDH., DWS, Moving Overlapping Grids with Adaptive Mesh Refinement for High-Speed
Reactive and Nonreactive Flow, J. Comp. Phys. 216 (2005).
• WDH., DWS, An adaptive numerical scheme for high-speed reactive flow on overlapping grids,
J. Comp. Phys. 191 (2003).
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Moving overlapping grids and AMR
A shock hitting a collection of cylinders (density).

adaptive mesh refinement

moving grids
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Detonation initiation in a T-shaped pipe
pressure

overlapping grid

Notes: cgcns, reactive-Euler: one refinement level, factor 4, 4930 time steps, 48

processors, from 5 to 682 grids, 100M pts (max) (eff. resolution 400 M).
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Estimating Convergence Rates

Define the volume-weighted discrete Lp-norm of a grid function Ui as

‖Ui‖p =

(∑

i |Ui|
p dVi

∑

i dVi

)1/p

, dVi =

∣

∣

∣

∣

∂x
∂r

∣

∣

∣

∣

i
dr1dr2dr3.

Assume the discrete solution Um
i at grid spacing hm satisfies

Um
i − u(xm

i , t) ≈ Cm
i hµ

m,

The difference between resolution hn and hm is

‖Um
i −Rm

n Un
i ‖p ≈ C|hµ

m − hµ
n |,

where Rm
n is a fine to coarse restriction operator.

Result: Given three solutions we can estimate the convergence rate µ
and the error.
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Estimating Convergence Rates

Detonation in a T-Pipe
t = 2.0 t = 2.8

hm Em
1 Em

2 Em
1 Em

2
1/120 4.0e−3 3.0e−2 3.8e−2 2.6e−1
1/160 2.2e−3 1.6e−2 2.4e−2 1.9e−1
1/240 9.8e−4 7.1e−3 1.2e−2 1.2e−1
rate, µ 2.04 2.07 1.65 1.09

Estimated L1 and L2 errors in the density, Em
1 and Em

2 , respectively, and
convergence rates µ at t = 2.0 and t = 2.8.

Henshaw (LLNL) PDEs on Overlapping Grids UIUC 23 / 35



Cgmx: electromagnetics solver.

a time-domain finite difference scheme.

fourth-order accurate, 2D, 3D.

Efficient time-stepping with the
modified-equation approach

High-order accurate symmetric difference
approximations.

High-order-accurate centered boundary and
interface conditions.

• WDH., A High-Order Accurate Parallel Solver for Maxwell’s Equations on

Overlapping Grids, SIAM J. Scientific Computing, 28, no. 5, (2006).
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Maxwell’s equations are solved in second-order form

Maxwell’s equations:

ǫµ ∂2
t E = ∆E + ∇

(

∇ ln ǫ · E
)

+ ∇ ln µ ×
(

∇× E
)

− µ∂t j

ǫµ ∂2
t H = ∆H + ∇

(

∇ ln µ · H
)

+ ∇ ln ǫ ×
(

∇× H
)

+ ǫ∇× (
1
ǫ

j)

Advantages of the second-order form:

No need for a staggered grid since the operator ∆ is elliptic.

One can solve for E alone.
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Modified Equation time stepping

Taylor series in time:

u(t + ∆t) − 2u(t) + u(t − ∆t)

∆t2 = utt +
∆t2

12
utttt + O(∆t4)

For the wave equation
utt = ∆u

a fourth-order scheme in space and time is

Un+1
i − 2Un

i + Un−1
i

∆t2 = ∆4hUn
i +

∆t2

12
(∆2)2hUn

i

This scheme is very efficient (especially on Cartesian grids) and allows
a large (cfl=1) time step.
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Centered numerical boundary conditions for
high-order approximations

Vector wave equation on a square

Ett = Exx + Eyy x ∈ Ω = [0, 1]2

PEC (perfect electrical conductor) boundary at x = 0:

Ey (0, y , t) = 0 (from n × E = 0),

∂xEx(0, y , t) = 0 (from ∇ · E = 0).

Taking time derivatives of the above and using the equations:

∂2m
x Ey (0, y , t) = 0 m = 0, 1, 2, 3, . . .

∂2m+1
x Ex(0, y , t) = 0 m = 0, 1, 2, 3, . . .

These centered conditions are used on the boundary instead of one-sided
approximations.
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Scattering of a plane wave by a sphere

Ex Ey Ez

grid N ||eEx ||∞ ||eEy ||∞ ||eEz ||∞ ||∇ · E||∞
sib1 40 1.1e − 2 7.9e − 3 5.6e − 3 4.0e − 3
sib2 80 8.1e − 4 5.6e − 4 4.0e − 4 4.2e − 4
sib4 160 5.4e − 5 3.7e − 5 2.7e − 5 5.4e − 5
rate 3.84 3.87 3.86 3.10

Maximum errors at t = 3.
The finest grid has 6.5 million grid points.
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Scattering of a plane wave by a dielectric cylinder

Ey Grid closeup

material interface

co = 1

ci = 2

grid ||eEx ||∞ ||eEy ||∞ ||eHz ||∞ δE

G1 1.4e−1 2.9e−1 3.0e−1 6.7e−2
G2 1.0e−2 2.1e−2 2.2e−2 4.5e−3
G4 6.8e−4 1.4e−3 1.4e−3 2.9e−4

rate σ 3.86 3.87 3.88 3.92

Known solution as a Mie series. Maximum errors at t = 1.
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Scattering by a 3d material interface

EX Intensity Intensity

glass

air

Uses newly developed 4th-order accurate 3D material interface
approximations.

Scattering of a plane wave by an interface with a bump, glass-to-air.

1 billion grid points, 32 nodes (8 processors per node) of a Linux cluster.
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Cgsm: a solid-mechanics solver (in Overture.v24).

linear elasticity on overlapping grids, with adaptive mesh refinement,

conservative finite difference scheme for the second-order system,

upwind Godunov scheme for the first-order-system.
Vibrating elastic sphere.

Diffraction of a p-wave “shock” by a circular cavity.

• D. Appelö, J.W. Banks , WDH, D.W. Schwendeman, Numerical Methods for Solid

Mechanics on Overlapping Grids: Linear Elasticity, LLNL-JRNL-422223, submitted.
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Cgmp: a multi-domain multi-physics solver.

Conjugate heat transfer: coupling incompressible flow to heat
conduction in solids.

overlapping grids for each fluid or solid domain,

a partitioned solution algorithm (separate physics
solvers in each sub-domain),

(cgins) incompressible Navier-Stokes equations
(with Boussinesq approximation) for fluid domains,

(cgad) heat equation for solid domains,

a key issue is interface coupling.

• WDH., K. K. Chand, A Composite Grid Solver for Conjugate Heat Transfer in

Fluid-Structure Systems, J. Comput. Phys, 2009.
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The multi-domain composite grid approach for CHT

Ω1
fluid Ω3

solid

Ω3
solid

Ω2
fluid

Ω4
solid

Ω5
solid

Each fluid or solid sub-domain is covered by an overlapping grid.
Fluid sub-domains : cgins. Solid sub-domains: cgad.
Coupled problem: cgmp.
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Deforming composite grids for FSI

Goal: Couple overlapping grid techniques for modeling fluids and
gases (using moving grids and AMR) with linear and non-linear solid
mechanics codes.

Approach:

• Fluids: Overlapping grid fluid-mechanics solver.
• Solids : unstructured grid or overlapping-grid solid-mechanics solver.
• Boundary fitted deforming grids are used at the fluid-solid interfaces.

Strengths of the approach:

• Maintains high quality grids for large deformations and displacements.
• Uses efficient structured grid methods optimized for Cartesian grids.

Current status:

• Solve Euler equations in the fluid domains on moving grids.
• Solve equations of linear elasticity in the solid domains.
• Fluid grids at the interface deform over time.
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Deforming composite grids for FSI

Shock focusing in a fluid cavity surrounded by an elastic solid.

Solid

Fluid

Solid Grid

Fluid Grid

Interface grid deforms

• Solving the Euler equations in the fluid, linear elasticity in the solid.

The figures show results from preliminary work to model an experiment by Veronica

Eliasson.
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Conclusions

Overlapping grids have been used to solve a wide class of
problems.

Smooth boundary fitted grids for accuracy.

Structured grids for efficiency.

Rapid grid generation for moving geometry.

Overture is a toolkit for grid generation and solving PDEs.

The CG set of PDE solvers solve a variety equation in contiuum
mechanics .

Open problem: automatic grid generation for complex geometry.
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